Last Updated: Vankeerbergen, Bernadette Chantal 08/28/2014

Term Information

Effective Term Autumn 2015

General Information

Course Bulletin Listing/Subject Area Geography

Fiscal Unit/Academic Org Geography - D0733 College/Academic Group Arts and Sciences Level/Career Graduate, Undergraduate

Course Number/Catalog

Course Title Spatial Databases for GIS

Transcript Abbreviation Spatial Databases

This course focuses on designing, implementing, querying and managing spatial **Course Description**

databases or persistent data stores where most entities have footprints in geographic space and time. This is critical for designing and implementing GIS for projects and organizations. It is also crucial for moving beyond GIS to the bigger world of

geographic information services.

Semester Credit Hours/Units Fixed: 3

Offering Information

Length Of Course 14 Week **Flexibly Scheduled Course** Never Does any section of this course have a distance No

education component?

Grading Basis Letter Grade

Repeatable No **Course Components** Lecture **Grade Roster Component** Lecture Credit Available by Exam No **Admission Condition Course** No Off Campus Never **Campus of Offering** Columbus

Prerequisites and Exclusions

Prerequisites/Corequisites Prereq: 5210

Exclusions

Cross-Listings

Cross-Listings

Subject/CIP Code

Subject/CIP Code 45.0701

Subsidy Level Doctoral Course

Intended Rank Senior, Masters, Doctoral

Requirement/Elective Designation

Required for this unit's degrees, majors, and/or minors

Course Details

Course goals or learning objectives/outcomes

- Understand database design with spatial objects;
- Be able to write spatial queries;
- Understand physical data storage and performance tuning;
- Understand spatio-temporal and moving objects data;
- Have practical GIS data skills

Content Topic List

- GIS
- Spatial databases
- Spatial queries
- Spatial data modeling

Attachments

GEOG 5212 generic syllabus.pdf

(Syllabus. Owner: Miller, Harvey Jay)

Comments

Workflow Information

Status	User(s)	Date/Time	Step
Submitted	Miller, Harvey Jay	08/27/2014 03:14 PM	Submitted for Approval
Approved	Miller, Harvey Jay	08/27/2014 03:15 PM	Unit Approval
Approved	Haddad, Deborah Moore	08/27/2014 07:53 PM	College Approval
Pending Approval	Hogle,Danielle Nicole Jenkins,Mary Ellen Bigler Hanlin,Deborah Kay Vankeerbergen,Bernadet te Chantal Nolen,Dawn	08/27/2014 07:53 PM	ASCCAO Approval

GEOGR 5212 Spatial Databases for GIS - <Term, Year>

Instructor	Harvey J. Miller
Lecture meeting time and	TBD (two course meetings per week)
location	
Office hours and location	TBD
Phone	614-292-5207
Internet	miller.81@osu.edu
Prerequisite	GEOG 5210 Fundamentals of GIS

Texts

1. Required

- (WD) Worboys, M. and Duckham, M. (2004) GIS: A Computing Perspective.
- Other readings see course outline and schedule.

2. Optional

- (SC) Shekhar, S. and Chawla, S. (2003) Spatial Databases: A Tour.
- Zeiler, M. (2010) *Modeling Our World: The ESRI Guide to Geodatabase Concepts*, second edition.

Course description

The future will be data-driven. Most scientific and professional enterprises, as well as consumers, are generating and using data in most activities. Much of these data will be georeferenced and have geospatial footprints.

This course focuses on designing, implementing, querying and managing *spatial databases* or persistent data stores where most entities have footprints in geographic space and time. This is critical for designing and implementing GIS for projects and organizations. It is also crucial for moving beyond GIS to the bigger world of *geographic information services*.

In designing any GIS project, a fundamental decision is how to represent the world of interest in the computer. This is critical since no GIS or spatial analysis tools – no matter how powerful – can extract more information than is designed in the database representation. The growing size of geospatial databases requires these databases to support efficient querying and searching. A well designed spatial database can also evolve as the questions in the project or organization change over time. A poorly designed spatial database is difficult to rewind and fix.

Understanding spatial database design and management is not only essential for designing and implementing GIS, but also to support a much wider range of geographic information services such as Google Maps and location-based services such as the location apps on your smartphone. This is a much bigger market than the market for professional GIS services.

Database technology

The most common spatial database management system (SDBMS) technology is a specialized object-relational database management system (ORDBMS). An ORDBMS supports objects within a relational (table-based) database and its associated query language, Structured Query Language (SQL). An ORDBMS is a SDBMS if it also supports spatial objects through spatial indexing and spatial (geometric) operations.

ORDBMS with spatial objects is the approach used by ESRI's Geodatabase as well as open-source software such as PostGreSQL/PostGIS. It is also supported by other major vendors such as IBM.

In this course, we will be working with ESRI's Geodatabase. There will be a series of assignments using this technology. These will be provided via Carmen and discussed in class.

Learning objectives

After successful completion of this course, you should:

- 1. Understand database design with spatial objects;
- 2. Be able to write spatial queries;
- 3. Understand physical data storage and performance tuning;
- 4. Understand spatio-temporal and moving objects data;
- 5. Have practical GIS data skills

Evaluation

<u>Examinations</u>: 50% of the final grade Assignments: 50% of the final grade

<u>Grading scale</u>: (OSU standard scale) A 93-100%; A- 90-92%; B+ 87-89%; B 83-86%; B- 80-82%; C+ 77-79%; C 73-76%; C- 70-72%; D+ 67-69%; D 60-66%; E 0-59%

Examinations

Examinations will be online using the CARMEN website. There will be approximately 4 midterm examinations and a final examination. The final is <u>not</u> comprehensive.

Policies

- 1. **Disability services.** Students with disabilities that have been certified by the Office for Disability Services will be appropriately accommodated and should inform the instructor as soon as possible of their needs. The Office for Disability Services is located in 150 Pomerene Hall, 1760 Neil Avenue; telephone 292-3307, TDD 292-0901; http://www.ods.ohio-state.edu/
- **2.** Academic misconduct. It is the responsibility of the Committee on Academic

Misconduct to investigate or establish procedures for the investigation of all reported cases of student academic misconduct. The term "academic misconduct" includes all forms of student academic misconduct wherever committed; illustrated by, but not limited to, cases of plagiarism and dishonest practices in connection with examinations. Instructors shall report all instances of alleged academic misconduct to the committee (Faculty Rule 3335-5-487). For additional information, see the Code of Student Conduct: http://studentlife.osu.edu/pdfs/csc_12-31-07.pdf

3. Technology policy: This is the 21st century, so I will not ban the use of laptops, tablets and other digital devices. However, there are some guidelines and restrictions: **Be mindful** – when you are emailing, tweeting, texting, updating, surfing, etc. you are not paying attention. Research shows that no one can multitask that well – not even you. Paying attention and taking good notes is essential to success in this course. Why are you here?

Be courteous – your use of digital devices should not distract other students in the class. It is unlikely that taking notes or searching class-relevant topics will be distracting. However, viewing videos of kittens or ice bucket challenges will likely distract others. Complaints about inappropriate technology use in class will result in your privileges being curtailed or revoked.

Be honest - emailing, surfing, and the use of any other applications or technologies is not allowed during the computer-based examinations. Be aware that your activity on the lab desktop computers may be monitored during exams.

Carmen

You are responsible for all announcements, additional reading, assignments and other material posted at the Carmen site, so be sure to check it frequently. I will also be posting PDFs of the slides I use in the lectures, as well as links to helpful and interesting websites.

Course outline and schedule (assume Spring 2015)

<u>Topic</u>	Readings	<u>Date</u>
Course overview	Syllabus	12 Jan 2015
Introduction		
Introduction to databases	WD 1-43	14 Jan 2015
Introduction to spatial databases	SC 1-20	21 Jan 2015
Spatial object-relational databases	Zeiler 1-19	21 Jan 2015
Exam 1: 26 Jan 2	2015	
Object-relational databases and spatial objects		
Relational databases	WD 43-45	28 Jan 2015
Database development	WD 55-71	28 Jan 2015
Object-orientation and spatial objects	WD 71-82	2 Feb 2015
Relational algebra and SQL		
Overview of relational algebra and SQL	WD 46-52	4 Feb 2015
Examples	SC 52-82	9 Feb 2015
Exam 2: 11 Feb 2	2015	_
Structures and access methods		
General database structures and access	WD 221-229	16 Feb 2015
From one to two dimensions	WD 229-234	18 Feb 2015
Raster structures	WD 234-240	23 Feb 2015
Point structures	WD 240-248	25 Feb 2015
Linear objects	WD 248-250	2 March 2015
Object collections	WD 250-255	4 March 2015
Spherical data structures	WD 255-258	9 March 2015
Exam 3: 11 March	2015	
Architectures		
Hybrid, integrated and composable architectures	WD 259-262	23 March 2015
Syntactic and semantic heterogeneity	WD 262-266	25 March 2015
Distributed systems	WD 266-278	30 March 2015
Location-aware computing	WD 278-291	1 April 2015
Exam 4: 6 April 2	2015	
Time		
Introduction	WD 359-367	8 April 2015
Temporal databases and versioning	WD 367-371	13 April 2015
Spatio-temporal databases	WD 371-382	15 April 2015
Moving objects concepts	Andrienko et al. (2008)	20 April 2015
Moving objects databases	Frentzos et al. (2008)	22 April 2015
Exam 5: 27 April		

Readings:

- 1. **Andrienko et al. (2008**): Andrienko, N., Andrienko, G., Peelkis, N. and Spaccapetra, S. (2008) "Basic concepts of movement data," in F. Gianotti and D. Pedreschi (eds.) *Mobility, Data Mining and Privacy*, Springer.
- **2. Frentzos et al. (2008):** Frentzos, E., Pelekis, N., Ntoutsi, I. and Theodoridis, Y. (2008) "Trajectory database systems," in in F. Gianotti and D. Pedreschi (eds.) *Mobility, Data Mining and Privacy*, Springer
- 3. SC 1-20: Chapter 1 of Shekhar and Chawla.
- **4. SC 52-82**: Chapter 3 of Shekhar and Chawla.
- **5. WD**: Worboys and Duckham
- **6. Zeiler 1-19**: Chapter 1 of Zeiler (2010)